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Abstract

As in the preceding paper, one studies coalescence of cavities in periodically voided ductile solids through consid-
eration of a cylindrical representative volume element (RVE) containing a spheroidal void and subjected to some
axisymmetric loading. However we now study the case where the major stress applied is no longer the axial one but the
lateral one, so that the strain is mainly horizontal. This case has not been considered before in either FE microme-
chanical studies or theoretical models. It is envisaged here through both approaches. The basic idea of the model is that
owing to the type of loading considered, the voids gradually concentrate along vertical columns. This is accounted for
by schematizing the RVE as made of two coaxial cylinders, a highly porous, central one surrounded by a sound one.
Just as in the case of coalescence in layers, the authors’ recent extension of Gurson’s model accounting for void shape is
used to describe the behavior of the central zone whereas the sound one obeys von Mises’ criterion. However, there is a
major difference, namely that the sound outer region cannot become rigid here, since this would prohibit global flow. As
a result, there is no more a sharp transition from pre-coalescence to coalescence but a gradual one. Comparison of the
model predictions with the FE results exhibits a good agreement for a wide range of triaxialities. © 2001 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

In all previous 2D (axisymmetric) FE micromechanical studies of void coalescence, and especially in the
pioneering work of Koplik and Needleman, 1988, it was assumed that the major stress applied was the axial
one (2.. > X, = X,,, where z denotes the direction of the axis of symmetry). As explained in Part I, this
resulted in coalescence occurring within horizontal “layers”. Also, previous theoretical models, such as
those of Perrin, 1992, based on Rudnicki and Rice (1975) work on strain localization, Pardoen and
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Hutchinson, 2000 and Benzerga, 2000, based on Thomason (1985) ““coalescence criterion”, only considered
the case of a major axial stress.

We shall consider here the ‘“‘opposite” case where the major stress applied is the lateral one
(Zw =2, > 2..). It can be anticipated that in that case, due to lateral stretching and vertical shrinking, the
intervoid distances will increase in the horizontal directions and decrease in the axial one, again resulting in
a strain-induced anisotropy of the distribution of voids. However voids will now concentrate along vertical
“columns” instead of horizontal “layers”, so that coalescence will occur through necking of the vertical,
and not horizontal, ligaments separating voids.

Coalescence “in columns’ was very recently observed experimentally by Benzerga, 2000, although not in
the situation envisaged here of a major lateral stress, but in laminated plates, for very prolate, aligned voids
generated around elongated inclusions resulting from the rolling process. Also, Benzerga made the remark
that although this type of coalescence is less detrimental than the other one (because formation of ruined
columns has less severe consequences upon the stress bearing capacity of the material than that of ruined
layers), it is of some importance in delamination of plates.

Following the same line of thought as for the modeling of coalescence in layers, one is naturally led
to the idea of schematizing the RVE as made up of several zones, highly porous or sound. However,
the porous region will now have to be a central cylinder surrounded by a sound one, instead of a
porous layer lying between two sound ones. Again, the behavior of the sound central zone will be de-
scribed by the Gologanu-LeblonA-Devaux (GLD) model (Gologanu, 1997; Gologanu et al., 1997),
which is an extension of the well-known model of Gurson, 1977 accounting for void shape effects, while
the surrounding sound one will naturally be assumed to obey von Mises’ criterion and the associated
flow rule.

However, there will be two main novelties with respect to the case of coalescence in layers. The first
one, of rather technical nature, is that whereas the strain rate and stress fields will again be considered
without harm as homogeneous in the porous central cylinder, such a hypothesis will become impossible in
the surrounding sound cylinder. However this difficulty will be circumvented by some trick resorting to
the (exact) model of Gurson, 1977 for cylindrical voids and avoiding the calculation of the entire me-
chanical fields within the sound zone. The second, more important difference is that it will no longer be
possible for this zone to become rigid, because it is quite obvious that this would preclude any global flow
of the RVE. Consequently, it will not be possible to clearly distinguish between a ““pre-coalescence” phase
and a ‘“‘coalescence” one, the transition between the two being now a gradual, and not sudden, phe-
nomenon.

It should be noted that precisely because of this, it seems an impossible task to extend previous
models for coalescence in layers (Perrin, 1992; Pardoen and Hutchinson, 2000; Benzerga, 2000) to co-
alescence in columns. Indeed the theories they resort to (Rudnicki and Rice, 1975 condition of strain
localization in Perrin’s approach, Thomason, 1985 coalescence criterion in those of Pardoen and
Hutchinson and Benzerga) are fundamentally based upon the assumption that the sound regions of the
material become rigid when coalescence sets in. Therefore the approach proposed here, based on the
mental division of the RVE into highly porous and sound zones, seems the only possible one for co-
alescence in columns.

Our model of coalescence in columns will be expounded first. The theoretical treatment will be somewhat
more involved than for coalescence in layers, because of the non-uniformity of the strain rate and stress
fields in the outer, sound cylinder. It will be given a compact format by using the notions of local and
overall plastic dissipations, together with some parametrization of the GLD yield locus, applicable in
particular to Gurson’s yield locus for cylindrical voids. Comparisons with the results of some FE micro-
mechanical simulations will be presented next. We shall only consider one initial porosity and an initially
spherical void, but several triaxialities encompassing the range of practical interest. A good agreement
between model predictions and numerical results will be evidenced in all cases.
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2. Model for coalescence in columns
2.1. Generalities

As in Part I, we consider a cylindrical RVE containing a void the shape of which is assumed to initially
be and subsequently approximately remain spheroidal. Again, the dimensions of the void are denoted ¢ and
b, and those of the cylinder, 4 and B (Fig. 1a). The RVE is subjected to some macroscopic axisymmetric
(2w = 2),) tensile (trX > 0) loading with predominant lateral stress (Z,, > X..). Its upper and lower sur-
faces are constrained to remain planar and the lateral one cylindrical; that is, the velocity v satisfies the
following boundary conditions:

v, =D,r forr=B8, (1a)
v.=D.z forz==+A, (1b)

where cylindrical coordinates are employed and D,, (=D,,) and D,, denote the non-zero components of the
macroscopic strain rate D. The triaxiality

(szx + Zzz)

1
r=3 2
Zxx_zzz ( )

is assumed to be fixed during the whole mechanical history.

As already mentioned in Section 1, due to lateral stretching and axial contraction, the horizontal void
spacing will increase and the vertical one decrease, resulting in a strain-induced anisotropy of the void
distribution, so that coalescence of voids will occur through necking of the vertical intervoid ligaments
(coalescence “in columns”). Following the same kind of idea as for coalescence in layers, we account for
this strain-induced anisotropy by schematizing the RVE as made up of two coaxial cylinders (Fig. 1b). The
central one, of radius D, is highly porous, while the surrounding one, of thickness B — D, is fully sound. The
stress and strain rate fields are considered as homogeneous in the porous zone. The GLD model (Gologanu
et al., 1997), accounting for void shape effects, is employed to describe its behavior; its equations were given
in Section 2 of Part I. On the other hand, the mechanical fields within the surrounding sound cylinder, the
behavior of which is obviously assumed to obey von Mises’ criterion and the associated flow rule, are
clearly inhomogeneous.

Our choice for the radius D of the central cylinder is again based on the consideration that since its
behavior is to be described by the GLD model, it should logically be geometrically as close as possible to
the RVE used for the derivation of that model, namely a spheroid confocal with the void. One thus obtains
the new “confocality condition”
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Fig. 1. The RVE considered in the model for coalescence in columns — (a) real RVE; (b) model composite structure.
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D~ A =b—-a=>D=\A2+1 - (3)

Again, we denote by p the volume proportion of the central porous cylinder within the RVE and by
f® = 2ab?/(34D?) the porosity in that zone; thus

_r ») —

p=5 S =5 (4)
where f = 2ab?/(34B?) denotes the porosity in the whole RVE. Again, more generally, we shall use upper
indices (p) and (s) to denote quantities defined in the porous cylinder and the sound one whenever any
confusion with some “macroscopic” quantity will be possible. For instance, we shall denote X®), X?) the
(homogeneous) stresses in the porous zone, which differ from the overall stresses X, 2., in the whole RVE.
On the other hand, the axial strain rate will simply be denoted D.., since the boundary condition (1b)
obviously implies that DP) = DS = D,..

It has already been mentioned in Section 1, and is self-evident, that rigidity of the sound outer cylinder
would prohibit any global flow of the RVE. Therefore, in contrast to the case of coalescence in layers, the
sound zone necessarily always remains plastic. As a consequence, no clear distinction between a pre-
coalescence period implying plasticity of the sound region and a coalescence one implying rigidity of this
zone will be necessary; the transition between the two periods will no more be sudden but gradual, and they
will be described by the same type of equations.

As a preliminary, let us derive the relation between the (homogeneous) strain rate D® in the porous
region and the macroscopic one, D. It has already been mentioned that Dgf) = D... Also, since the sound
zone is incompressible, 2D + D®) = (2D, + D..) /p. It follows that

(P) — pP) — D | 1 (1 1 1(1_
DR =DP) =P 41 (1—1)D. =5 (Do +Dy) +3 (5~ 1)D=, )
DY) =D..,
which implies that
onf) _ oo _opl _ e
oDy, 0D, 0Dy, Dy  2p°’
) _of 1 (1 (6)
oD, — oD, ~ 2\ p )
an?
o = 1

2.2. Calculation of stresses

Because of axisymmetry and incompressibility of the sound outer cylinder, it is easy to determine the
velocity field in this region, as a function of the components of the macroscopic strain rate. The calculation
of the microscopic stresses in the outer cylinder and of the macroscopic stresses then follows from the
equations expressing radial equilibrium, von Mises’ criterion and the associated flow rule. This calculation
is analogous to that performed by Gurson, 1977 to derive the overall criterion of a hollow cylinder, the sole
difference being that here the inner boundary is no longer traction-free. However one can propose a shorter,
though somewhat more abstract, approach based upon the notions of plastic microscopic (w) and mac-
roscopic (W) dissipations. By these expressions, one means functions of the microscopic (d) or macroscopic
(D) strain rates such that

ow ow
Gzﬁ(d% EZ@(D)- (7)
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It has been shown by Gurson, 1977 that

where Q denotes both the domain occupied by the RVE and its volume, and v (which depends on D) the
solution of the plasticity problem compatible with the boundary conditions (l1a) and (1b). It follows that,
with obvious notations,

w (D) = pw® (D)) +1 / w (d(v))dQ.
Q Q)
Now the second term in the right-hand side here, which involves an integral over the sole sound region Q"
represents the overall plastic dissipation of a sound hollow cylinder with an empty core. Indeed it was noted
above that the solution v in the outer cylinder is uniquely determined as a function of D by Egs. (1a) and
(1b) and thus is the same irrespective of whether the inner one is porous or empty. We shall use an upper
index (s +v) (“sound + void™) to denote quantities relative to this “auxiliary’ structure consisting of a
sound outer cylinder with an empty core. With this notation, the preceding expression becomes

W(D) = pw® (D“’)) + W (D)

so that
ow ow® oD® )
_ — (P)y .
(p)
= px® (D(p)) . 6;3)1) + X6 (D).

Using the values of the non-zero components of the fourth order tensor 3D /3D given by Eq. (6), one
deduces the following expressions of X, and X, from the preceding equation:

I, = > Z(HV)7 g
T = (I p)ED A 30 + 30, o

We shall now use the parametrization (A.2)—(A.4) of the GLD yield locus expounded in Appendix A.
We first apply it to the stresses in the porous zone, replacing ., ... €, A, .7, B, f by TP, xP) p) 1))
P, 3P @ (No similar upper index is used for the other quantities involved, because this is more
economical and will not raise any ambiguity.) Since by Eq. (A.7), ¢® is also the opposite of the sign of
(1 = 2u,)DP) — o, D., which is positive (because in practice D) > 0 and D.. < 0 for the type of loading
considered here), € is negative. Therefore the parametrization of the yield locus of the porous zone reads

(

22— (1= 20)/ ™ (A7) + [1 + (1 = 21} (A7),

a0
i - _20(2&/@) (;L(P)) +(1— 20(2,7)93@ (;L(lo))7

a0

where

SV (37) = & [\/ﬂﬁ’ﬂ g+ 1) = g+ f<p>)2} ,

] ) . ()
AP (’1@) = % {arg sinh (q(gir(j‘“’))) —arg sinh (:’%)} ’

! Note that just like €, ¢ denotes a sign, not a (plastic) strain!
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AP being an arbitrary parameter. It is recalled that the parameters o, 5, C, g, g, K here are given by Eqgs.
(2), (5)~(12) of Part I, f being replaced by f®.

Let us now consider the “auxiliary”” (sound + void) structure. For such a hollow cylinder (Gurson,
1977), criterion is exact (for axisymmetric loadings, as considered here). Furthermore, the GLD model
reproduces this exact solution, the parameters oy, 1, C, g, ¢, x taking then the values 1/2, 0, 1, 0, 1, V3 (see
Gologanu et al., 1997). Therefore the parametrization defined by Egs. (A.2)—(A.4) of Appendix A is ap-
plicable with these substitutions, and provided that f'is replaced by the volume proportion p of the central
empty core. Since €Y = sgnD_. (Eq. (A.7) with a, = 1/2) is negative in practice, the parametrization reads

5 B ( i(s«#v))’

25?") Ca) ( ;<s+v>) Ty Al ( /1<5+v>) (1)
- ;
where
A ) R R (12)

(s+v) [ g(s+v) ) — L : AU : 2 (s4v)
B (i ) _ﬂ[arg smh( - ) arg sinh 4 },
A5 being another arbitrary parameter.

In fact, the parameters A* and 2*™ are not independent, because they are tied to the strain rates D

and D through Eq. (A.6) of Appendix A, and D® and D are themselves tied through Eq. (5). Thus

D®
r b= 0, (13a)
2|:<1 - 20(2)D)((§> - aZDZZ:| \/6
D ,
_UD_ aae, (13b)

DZZ

Using Eq. (5), one then easily shows that
L;(p) — \/§,1(5+">

VC o p+V3(1 = 205)00

Eqs. (8)~(12), (14) express the stresses in terms of a single free parameter, A*™"). The value of this pa-
rameter may be determined by enforcing condition (2), where 7 denotes the overall triaxiality imposed.

+ 7. (14)

2.3. Evolution of the strain, the porosity and the void shape
Once the parameter A5 §s known, Eq. (13b) provides the value of the ratio D,,/D.., and therefore those
of D, and D.. up to some positive multiplicative constant. The values of D and D) then follow from Eq.
(%5).

Once D is known, the porosity rate is given by the classical (unmodified) evolution equation for f (Eq.
(14) of Part I). Also, the evolution of the void shape parameter S is given by Eq. (15) of Part I with the
appropriate replacements, that is

. 1 - 30(1
S:h(DZZ—D)((E))—F (W—F:;OCQ— l)trD(p). (15)
The parameter 4 here is given by Egs. (16) and (17) and the second term of Eq. (19) of Part I, f being
replaced by f® and 7 =122, + 2..) /(2. — Z..) by TP =125 4 3®)) /(50 — 3],

XX zz
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The above equations allow for the step-by-step calculation of all quantities of interest as functions of
some ‘“‘control parameter”’, for instance the overall equivalent cumulated strain

t

Eo = /O @D D) *(z)dr = /0 ADy — D-.)(7)dr (16)

where D’ denotes the deviator of D.

3. Comparison with some finite element simulations

Finite element micromechanical simulations analogous to those of Koplik and Needleman, 1988 and
those presented in Part I, but with a predominant lateral stress (2., > X..), have been performed. Only one
initial porosity, namely f, = 0.0104, and an initially spherical void were considered. Also, equal values were
taken for the initial diameter and height of the RVE. Triaxialities of 1/3, 2/3, 1 and 2 were considered.
Computations were performed using the SYSTUS FE code developed by SYSTUS International. The
results of these simulations will now be compared to the model predictions.

A value of 1.1 for Tvergaard (1981) parameter g, for spherical cavities will be used in the model, unless
otherwise stated. This value is smaller than those used in Part I for coalescence in layers (g0 = 1.47 and 1.6
for f, = 0.0104 and 0.0002 respectively). However, it is compatible with the finding of Gologanu, 1997 that
smaller gy values must be used for loadings with two equal major principal stresses and one minor one, as
considered here, than for loadings with one major principal stress and two equal minor ones, as considered
in Part I. In fact, the value adopted is the one that provides the best possible agreement between numerical
and theoretical curves at the beginning of the mechanical history (prior to coalescence).

Fig. 2 presents the comparison of numerical results and model predictions for the normalized stress
2eq/ 00, the porosity and the opposite of the void shape parameter. Fig. 2a exhibits a remarkable agreement
for the overall stress—overall strain curves. For triaxialities of 2/3, 1 and 2, both the FE results and the
model predictions involve a slow decrease of the normalized stress prior to coalescence followed by a
quicker (although much less marked than for coalescence in layers) one during coalescence, with a smooth
transition between the two regimes. For a triaxiality of 1/3, the model does not predict any coalescence,
again in agreement with the numerical results. Fig. 2b shows the evolution of the porosity. The initially
slow, then gradually quicker increase of f'is again correctly reproduced by the model for 7 = 2/3, 1 and 2.
On the other hand, both the numerical results and the model involve void closure for 7' = 1/3 (which
is obviously why coalescence does not occur in that case). The explanation is that the initially spherical
void grows into oblate shapes since X, > X, thus becoming more and more “sensitive’ to the axial stress
which is negative for this triaxiality, and thereby collapses. Finally, Fig. 2c and d exhibit a qualitatively
satisfactory, though poorer than before, agreement for the evolution of the void shape parameter. The
discrepancy is obviously due to the fact that the evolution equation (15), which was designed for the pre-
coalescence period, does not quite capture the specific evolution of the void shape during coalescence.

Just as for coalescence in layers, we shall finally show that it is essential to introduce both the division of
the RVE into highly porous and sound zones and void shape effects into the model in order to get satis-
factory predictions. The mental division of the RVE may easily be suppressed by setting D = B (instead of
VA? + b> — a?; see Fig. 1). In fact, this just means using the GLD model to describe the behavior of the
whole RVE instead of the sole porous zone, thereby completely forgetting about coalescence. Fig. 3a and b
compare the numerical results with the theoretical ones obtained in that way, for the normalized stress and
the porosity. Two values of Tvergaard’s parameter ¢o, 1.1 and 1.4, are used in order to show that it then
becomes impossible to reproduce both the beginning and the end of the numerical curves, whatever the
value of gy chosen (except for a triaxiality of 1/3, for which no coalescence occurs).
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Zeq/ S
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T=2/3

Eeq 0 L . Eeq
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5

Fig. 2. Comparison of FE results (—) and model predictions (---) — (a) normalized stress; (b) porosity; (c) and (d) void shape pa-
rameter.

0.0 0.5 1.0 Eeq 15

Fig. 3. Same as Fig. 2a and b, but for the simplified model considering only one, porous zone (GLD model) — (--+): go = 1.1; (- - -):
qo = 1.4.

On the other hand, void shape effects may be suppressed in the model by using Gurson’s original model
(for spherical cavities), instead of the GLD model, to describe the behavior of the porous region. It is then
logical to take D = 4, in agreement with the second part of Eq. (3) with « = b. Fig. 4a and b show the
results obtained in that way. The agreement of numerical and theoretical results is still good for 7 = 1 and
2, but the model now underestimates the ductility (overestimates the porosity) for 7' = 2/3. Also, it wrongly
predicts void growth (and coalescence) instead of collapse for 7 = 1/3.

Appendix A. Parametrization of the GLD yield locus

The parametrization proposed emerges in a natural way from the derivation of the macroscopic yield
criterion through homogenization (see e.g. Leblond and Perrin, 1996, for the simpler case of the Gurson
model). It reads as follows:
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Fig. 4. Same as Fig. 2a and b, but for the simplified model using the Gurson model instead of the GLD model in the porous zone.

= )
where ?
e =sgn(2; — 2y + 1) h
and

A0 = VP e 1P - \E e 7).
A =1 {arg sinh (m) — arg sinh (g%)},
A being an arbitrary parameter. Indeed it is easy to check that if 2., — X, + 1%, and X, are given by Eq.
(A.1), then
C

2
g(zﬂ — T+ 12" +2q(g + 1)(g + f) cosh (KGZ) —(g+ 1) =g+ /) =0,
0

(A.3)

which is the analytical expression of the GLD yield criterion (see Eq. (3) of Part I).
Since

2 =202+ (1 —20,)2,,
(Eq. (4) of Part I), Eq. (A.1) may be solved with respect to X, and X, to yield
{ In — (1 = 2m) el (A) + [1 + (1 = 2m)n]B(A),

0]

ﬁ = 260(2&/(2) + (1 - 20‘271)@(1)’

a0

(A4)

which is just another form of the parametrization of the criterion.
The parameter A may be related to the components of the strain rate. Indeed, since the flow rule as-
sociated via normality to the GLD criterion reads

D, = H[G—C(%(Znocz — 1)(Z2 = Za +0Z3) + 2mq(g + 1)(g + f) £ sinh (Kf—é’)},

D= 2H [ §(1+1(1 = 22))(Zz = Zee +153) + (1 = 2)g(g + 1)(g + /) £ sinh (12 )],

where H denotes the plastic multiplier (Eq. (13) of Part I), it is easy to show that

2 Note that € denotes a sign, not a strain!
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(1 = 203)Dyy — uD,, = —H% (2. —2Zn+nZ)), (A.5a)
0
trD + 25[(1 — 202) Dy, — oD..] = 2Hg(g + 1) (g + f) aﬁ sinh (Ki"> (A.5b)
0 0

Taking the ratio of these equations in order to eliminate the plastic multiplier and using Egs. (A.1) and
(A.3), one gets

trD K
= e, A6
(1 = 2m)De —aD] 17 "G (A-6)

This provides the desired relation.
Finally, note that by Egs. (A.2) and (A.5a),

e = —sgn[(1 — 20p) D,y — 02 D..]. (A7)
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